On the embedding dimension of 2-torsion lens spaces
نویسندگان
چکیده
منابع مشابه
Embedding Finite Metric Spaces in Low Dimension
This paper presents novel techniques that allow the solution to several open problems regarding embedding of finite metric spaces into Lp. We focus on proving near optimal bounds on the dimension with which arbitrary metric spaces embed into Lp. The dimension of the embedding is of very high importance in particular in applications and much effort has been invested in analyzing it. However, no ...
متن کاملOn the Embedding of 2-concave Orlicz Spaces into L
In [K–S 1] it was shown that Ave π ( n ∑
متن کاملMinimal bi-Lipschitz embedding dimension of ultrametric spaces
We prove that an ultrametric space can be bi-Lipschitz embedded in R if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
متن کاملon numerical semigroups with embedding dimension three
let $fneq1,3$ be a positive integer. we prove that there exists a numerical semigroup $s$ with embedding dimension three such that $f$ is the frobenius number of $s$. we also show that the same fact holds for affine semigroups in higher dimensional monoids.
متن کاملEmbedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Homology, Homotopy and Applications
سال: 2009
ISSN: 1532-0073,1532-0081
DOI: 10.4310/hha.2009.v11.n2.a7